
 
 
 

Coastal Vulnerability Assessment of Dry 
Tortugas National Park to Sea-Level Rise 
 

By Elizabeth A. Pendleton, E. Robert Thieler, and S. Jeffress Williams 

 

Any use of trade, firm, or product names is for descriptive purposes only and does not 
imply endorsement by the U.S. Government 

Open-File Report 2004-1416
 

 
U.S. Department of the Interior 
U.S. Geological Survey 



U.S. Department of the Interior 
Gale A. Norton, Secretary 

U.S. Geological Survey 
Charles G. Groat, Director 

U.S. Geological Survey, Reston, Virginia 
 
For Additional Information:  
See the National Park Unit Coastal Vulnerability study at http://woodshole.er.usgs.gov/project-pages/nps.cvi/,  
the National Coastal Vulnerability study at http://woodshole.er.usgs.gov/project-pages/cvi/,   
or view the USGS online fact sheet for this project in PDF format at http://pubs.usgs.gov/fs/fs095-02/. 

Dry Tortugas National Park Web pages are at http://www.nps.gov/drto/index.htm. 
 
Contact:  
http://woodshole.er.usgs.gov/project-pages/nps-cvi/ Telephone: 508-548-8700  
 
Rebecca Beavers 
National Park Service 
Natural Resource Program Center 
Geologic Resources Division 
P.O. Box 25287 
Denver, CO 80225-0287 

Rebecca Beavers@nps.gov 
Telephone: 303-987-6945 

For more information on the USGS—the Federal source for science about the Earth, 
its natural and living resources, natural hazards, and the environment: 
World Wide Web:  http://www.usgs.gov 
Telephone:  1-888-ASK-USGS 
 
Although this report is in the public domain, permission must be secured from the individual  
copyright owners to reproduce any copyrighted material contained within this report. 



Contents 
 
Abstract .........................................................................................................................................................................4 
Introduction ...................................................................................................................................................................4 
Data Ranking .................................................................................................................................................................5 
The Dry Tortugas National Park....................................................................................................................................5 
Methodology..................................................................................................................................................................6 
Geologic Variables ........................................................................................................................................................6 
Physical Process Variables ............................................................................................................................................7 
Coastal Vulnerability Index...........................................................................................................................................7 
Results ...........................................................................................................................................................................8 
Discussion......................................................................................................................................................................8 
Conclusions ...................................................................................................................................................................8 
References .....................................................................................................................................................................9 
List of Figures..............................................................................................................................................................10 
List of Tables...............................................................................................................................................................11 

 
 
 
 



Coastal Vulnerability Assessment of Dry Tortugas 
National Park to Sea-Level Rise 
By Elizabeth A. Pendleton, E. Robert Thieler, S. and Jeffress Williams 

Abstract 

A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-
level rise within Dry Tortugas National Park in Florida. The CVI ranks the following in terms of their physical 
contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level 
rise, historical shoreline change rates, mean tidal range and mean significant wave height. The rankings for each 
input variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI 
highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines 
the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, 
yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. 
The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. 
Dry Tortugas National Park consists of relatively stable to washover-dominated portions of carbonate beach and 
man-made fortification. The areas within Dry Tortugas that are likely to be most vulnerable to sea-level rise are 
those with the highest rates of shoreline erosion and the highest wave energy.  

Introduction 

The National Park Service (NPS) is responsible for managing nearly 12,000 km (7,500 miles) of shoreline 
along oceans and lakes. In 2001, the U.S. Geological Survey (USGS), in partnership with the NPS Geologic 
Resources Division, began conducting hazard assessments of future sea-level change by creating maps to assist NPS 
in managing its valuable coastal resources. This report presents the results of a vulnerability assessment for Dry 
Tortugas National Park, highlighting areas that are likely to be most affected by future sea-level rise. 

Global sea level has risen approximately 18 centimeters (7.1 inches) in the past century (Douglas, 1997). 
Climate models predict an additional rise of 48 cm (18.9 in.) by 2100 (IPCC, 2002), which is more than double the 
rate of rise for the 20th century. Potential coastal impacts of sea-level rise include shoreline erosion, saltwater 
intrusion into groundwater aquifers, inundation of wetlands and estuaries, and threats to cultural and historic 
resources as well as infrastructure. Predicted accelerated global sea-level rise has generated a need in coastal 
geology to determine the likely response of a coastline to sea-level rise. However, an accurate and quantitative 
approach to predicting coastal change is difficult to establish. Even the kinds of data necessary to predict shoreline 
response are the subject of scientific debate. A number of predictive approaches have been proposed (National 
Research Council, 1990 and 1995), including: 

1. extrapolation of historical data (e.g., coastal erosion rates),  

2. static inundation modeling,  

3. application of a simple geometric model (e.g., the Bruun Rule),  

4. application of a sediment dynamics/budget model, or  

5. Monte Carlo (probabilistic) simulation based on parameterized physical forcing variables. 

However, each of these approaches has inadequacies or can be invalid for certain applications (National 
Research Council, 1990). Additionally, shoreline response to sea-level change is further complicated by human 
modification of the natural coast such as beach nourishment projects, and engineered structures such as seawalls, 
revetments, groins, and jetties. Understanding how a natural or modified coast will respond to sea-level change is 
essential to preserving vulnerable coastal resources. 



The primary challenge in predicting shoreline response to sea-level rise is quantifying the important 
variables that contribute to coastal evolution in a given area. In order to address the multi-faceted task of predicting 
sea-level rise impact, the USGS has implemented a methodology to identify areas that may be most vulnerable to 
future sea-level rise (see Hammar-Klose and Thieler, 2001). This technique uses different ranges of vulnerability 
(low to very high) to describe a coast's susceptibility to physical change as sea level rises. The vulnerability index 
determined here focuses on six variables that strongly influence coastal evolution:   

1. Geomorphology

2. Historical shoreline change rate  

3. Regional coastal slope

4. Relative sea-level change

5. Mean significant wave height

6. Mean tidal range

These variables can be divided into two groups: 1) geologic variables and 2) physical process variables. 
The geologic variables are geomorphology, historic shoreline change rate, and coastal slope; they account for a 
shoreline's relative resistance to erosion, long-term erosion/accretion trend, and its susceptibility to flooding, 
respectively. The physical process variables include significant wave height, tidal range, and sea-level change, all of 
which contribute to the inundation hazards of a particular section of coastline over time scales from hours to 
centuries. A relatively simple vulnerability ranking system (Table 1) allows the six variables to be incorporated into 
an equation that produces a coastal vulnerability index (CVI). The CVI can be used by scientists and park managers 
to evaluate the likelihood that physical change may occur along a shoreline as sea level continues to rise. 
Additionally, NPS staff will be able to incorporate information provided by this vulnerability assessment technique 
into general management plans 

Data Ranking 

 Table 1 shows the six variables described in the Introduction, which include both quantitative and 
qualitative information. The five quantitative variables are assigned a vulnerability ranking based on their actual 
values, whereas the non-numerical geomorphology variable is ranked qualitatively according to the relative 
resistance of a given landform to erosion. Shorelines with erosion/accretion rates between -1.0 and +1.0 m/yr are 
ranked as being of moderate vulnerability in terms of that particular variable. Increasingly higher erosion or 
accretion rates are ranked as correspondingly higher or lower vulnerability. Regional coastal slopes range from very 
high vulnerability, <0.3 percent, to very low vulnerability at values >1.2 percent. The rate of relative sea-level 
change is ranked using the modern rate of eustatic rise (1.8 mm/yr) as very low vulnerability. Since this is a global 
or "background" rate common to all shorelines, the sea-level rise ranking reflects primarily local to regional isostatic 
or tectonic adjustment. Mean wave height contributions to vulnerability range from very low (<0.55 m) to very high 
(>1.25 m). Tidal range is ranked such that microtidal (<1 m) coasts are very high vulnerability and macrotidal (>6 
m) coasts are very low vulnerability. 

The Dry Tortugas National Park 

The atoll-like, coral and carbonate sand islands of the Dry Tortugas lie about 110 km (~70 miles) west of 
Key West in Florida (Figure 1). These islands formed during the Holocene as wave processes in combination with a 
slow-steady rise in sea-level worked limestone and coral into mounds of carbonate sand with thicknesses ranging 
from 14 - 18 m (~45 - 55 ft) (Shinn et al, 1977). These islands were named Las Tortugas by Spanish explorer Ponce 
de Leon because of the large number of turtles inhabiting these islands. Later Dry was added to the name on nautical 
charts to let mariners know that there was no fresh water on the islands. 

 



The largest brick structure in the Western Hemisphere is located on Garden Key and is nineteenth century 
Fort Jefferson. Construction began in 1846 as part of the US coastal fortification efforts following the War of 1812, 
but the fort was never completed. Fort Jefferson was used as a military prison during the Civil War, but was 
abandoned by the Army in 1874. In 1908 the Dry Tortugas were declared a wildlife refuge, then in 1935 Fort 
Jefferson National Monument was established, creating the first underwater park unit. In 1992 the area became Dry 
Tortugas National Park. 

Hurricanes passing through the Gulf of Mexico are always reshaping the islands and leaving their mark on 
Fort Jefferson. During 2004 when Hurricane Charley passed over the Dry Tortugas, the landbridge connecting Bush 
Key to Garden Key washed over, but within a few hours the spit reformed (M. Ryan, personal communication, Oct. 
29, 2004). Although storm impacts are not directly addressed in this report it is important to acknowledge their role 
in the dynamic evolution of the Dry Tortugas. Further the authors acknowledge that the islands of the Dry Tortugas 
owe their continued existence to coral reef productivity, which is vulnerable to not only expected accelerated sea-
level rise, but also hurricane damage, increased water temperature, boat anchoring, coral disease, and fishing. Coral 
reef health and productivity is not directly addressed in this methodology.   

Methodology 

In order to develop a database for a park-wide assessment of coastal vulnerability, data for each of the six 
variables mentioned above were gathered from state and federal agencies (Table 2). The database is based on that 
used by Thieler and Hammar-Klose (1999) and loosely follows an earlier database developed by Gornitz and White 
(1992). A comparable assessment of the sensitivity of the Canadian coast to sea-level rise is presented by Shaw and 
others (1998). Also a report on the effects of rising seas on coral reefs in South Florida was presented by Lidz and 
Shinn (1991). 

The database was constructed using a 1:40,000-scale shoreline for Dry Tortugas that was produced by the 
Florida Department of Environmental Protection. Data for each of the six variables (geomorphology, shoreline 
change, coastal slope, relative sea-level rise, significant wave height, and tidal range) were added to the shoreline 
attribute table (Figure 2). Ideally, a 1-minute (approximately 1.5 km) grid is used to divide the shoreline into units in 
which each variable will be defined. However, due to the configuration and size of the islands of the Dry Tortugas, a 
grid was not feasible. All of the islands except middle key (the smallest) were divided into two shoreline segments 
generally along their long axis. Next each variable in each grid cell was assigned a vulnerability value from 1-5 (1 is 
very low vulnerability, 5 is very high vulnerability) based on the potential magnitude of its contribution to physical 
changes on the coast as sea level rises (Table 1).  

Geologic Variables 

The geomorphology variable expresses the relative erodibility of different landform types (Table 1). 
These data were derived from USGS 1-meter resolution digital orthophotos of Dry Tortugas (Table 2). In addition, 
field visits were made within the park to ground-truth the geomorphologic classification. All areas of the Dry 
Tortugas are considered very high vulnerability with the exception of Loggerhead Key, which was classified as high 
vulnerability because of the presence of substantial stretches of beach rock that has helped protect the island and 
what remains of the Carnegie Institute Lab (Ginsburg, 1953) (Figure 3A). Fort Jefferson and the moat wall 
surrounding it are classified as very high vulnerability, even though the fort is 15 meters higher than anything else in 
the Dry Tortugas. This classification was made because the Fort is built upon carbonate sand, and the human 
resources required to maintain the Fort over time are less frequent than the replenishment of carbonate sand through 
biologic and physical processes (Figure 3A-E). 

Shoreline erosion and accretion rates for Dry Tortugas were calculated using digitized shorelines from 
NOAA T-sheets, Nautical Charts, and USGS aerial photography (Table 2). Shoreline rates of change (m/yr) were 
calculated at 200 m intervals (transects) along the coast using Digital Shoreline Analysis System (DSAS) software 
(http://woodshole.er.usgs.gov/project-pages/dsas/) to derive the rate of shoreline change. The change rates for each 
transect within each grid cell were averaged to determine the shoreline change value used here, with positive 
numbers indicating accretion and negative numbers indicating erosion. Shoreline change rates on Dry Tortugas 



range from 2 m/yr of accretion (low vulnerability) to almost greater than 2 m/yr of erosion (very high vulnerability) 
(Figure 4A-C). 

Regional coastal slope is an indication of the relative vulnerability to inundation and the potential rapidity 
of shoreline retreat because low-sloping coastal regions should retreat faster than steeper regions (Pilkey and Davis, 
1987). The regional slope of the coastal zone was calculated from a grid of topographic and bathymetric elevations 
extending 5 km landward and seaward of the shoreline. Elevation data were obtained from the National Geophysical 
Data Center (NGDC) as gridded topographic and bathymetric elevations at 0.1 meter vertical resolution for 3 arc-
second (~90 m) grid cells. Regional coastal slopes for Dry Tortugas all fall within the high vulnerability category 
(0.3 - 0.6 % slope). 

Physical Process Variables 

The relative sea-level variable is derived from the change in annual mean water elevation over time as 
measured at tide gauge stations along the coast. The rate of sea-level rise for Key West in FL is 2.27 +/- 0.09 mm/yr 
based on 87 years of data (Maul and Martin, 1993; Zervas, 2001). This variable inherently includes both eustatic 
sea-level rise as well as regional sea-level rise due to isostatic and tectonic adjustments of the land surface. Relative 
sea-level change data are a historical record, and thus portray only the recent sea-level trend (< 150 years). Relative 
sea-level rise for Dry Tortugas falls within low vulnerability based on water elevation data at Key West in Florida.. 

Mean significant wave height is used here as a proxy for wave energy which drives coastal sediment 
transport. Wave energy is directly related to the square of wave height: 

E = 1/8 ρgH2

where E is energy density, H is wave height, ρ is water density and g is acceleration due to gravity. Thus, 
the ability to mobilize and transport coastal sediments is a function of wave height squared. In this report, we use 
hindcast nearshore mean significant wave height data for the period 1976-95 obtained from the U.S. Army Corps of 
Engineers Wave Information Study (WIS) (Hubertz and others, 1996). The model wave heights were compared to 
historical measured wave height data obtained from the NOAA National Data Buoy Center to ensure that model 
values were representative of the study area. For Dry Tortugas, mean significant wave heights are between 0.5 and 
0.8 m, which represents very low and low vulnerability, respectively. 

Tidal range is linked to both permanent and episodic inundation hazards. Tide range data were obtained 
from NOAA/NOS for a tide gauge at Key West, FL. Dry Tortugas is classified as very high vulnerability (less than 
1 meter) with respect to tidal range. 

Coastal Vulnerability Index 

The coastal vulnerability index (CVI) presented here is the same as that used in Thieler and Hammar-Klose 
(1999) and is similar to that used in Gornitz and others (1994), as well as to the sensitivity index employed by Shaw 
and others (1998). The CVI allows the six variables to be related in a quantifiable manner that expresses the relative 
vulnerability of the coast to physical changes due to future sea-level rise. This method yields numerical data that 
cannot be equated directly with particular physical effects. It does, however, highlight areas where the various 
effects of sea-level rise may be the greatest. Once each section of coastline is assigned a vulnerability value for each 
specific data variable, the coastal vulnerability index (CVI) is calculated as the square root of the product of the 
ranked variables divided by the total number of variables; 

 

 
where, a = geomorphology, b = shoreline erosion/accretion rate, c = coastal slope, d =relative sea-level rise 

rate, e = mean significant wave height, and f = mean tide range. The calculated CVI value is then divided into 



quartile ranges to highlight different vulnerabilities within the park. The CVI ranges (low - very high) reported here 
apply specifically to Dry Tortugas National Park, and are not comparable to CVI ranges in other parks where the 
CVI has been employed (i.e. very high vulnerability means the same among parks; it's the numeric values that differ, 
such that a numeric value that equals very high vulnerability in one park may equal moderate vulnerability in 
another). To compare vulnerability between coastal parks, the national-scale studies should be used (Thieler and 
Hammar-Klose, 1999, 2000a, and 2000b). We feel this approach best describes and highlights the vulnerability 
specific to each park. 

   Results 

 The CVI values calculated for Dry Tortugas range from 3.33 to 7.45. The mean CVI value is 5.56; the 
mode is 4.71 and the median is 5.77. The standard deviation is 1.42. The 25th, 50th, and 75th percentiles are 4.71, 
5.77 and 6.67, respectively.   

Figure 5 shows a map of the coastal vulnerability index for Dry Tortugas National Park. The CVI scores 
are divided into low, moderate, high, and very high-vulnerability categories based on the quartile ranges and visual 
inspection of the data. CVI values below 4.71 are assigned to the low vulnerability category. Values from 4.71 to 
5.16 are considered moderate vulnerability. High-vulnerability values lie between 5.17 and 6.67. CVI values above 
6.67 are classified as very high vulnerability. Figure 6 shows the percentage of Dry Tortugas shoreline in each 
vulnerability category. Coastal vulnerability was mapped for seven islands within the Dry Tortugas. Of this total, 
twenty-three percent of the mapped shoreline is classified as being at very high vulnerability due to future sea-level 
rise. Twenty-three percent is classified as high vulnerability, thirty-eight percent as moderate vulnerability, and 
sixteen percent as low vulnerability.    

Discussion 

The data within the coastal vulnerability index (CVI) show variability at different spatial scales (Figure 5). 
However, the ranked values for the physical process variables vary less over the extent of the shoreline. The value of 
the relative sea-level rise variable is constant at low vulnerability for the entire study area. The significant wave 
height vulnerability is low to very low. The tidal range is very high vulnerability (< 1m) for all of Dry Tortugas. 

The geologic variables show the most spatial variability and thus have the most influence on CVI 
variability (Figure 5). Geomorphology in the park includes high vulnerability beachrock stabilized shoreline and 
very high vulnerability carbonate beach including areas with manmade structures. Vulnerability assessment based 
on historical shoreline change trends varies from low to very high (Figure 4A-E). Regional coastal slope is in the 
high vulnerability range over the entire extent of Dry Tortugas. 

The area within the Dry Tortugas that may be most vulnerable to future sea-level rise (very high 
vulnerability) are the islands with the highest rates of shoreline change and high wave heights such as Middle key 
and East Key. The areas least vulnerable to sea-level rise may be the south facing shorelines of Bush and Long Key 
due to shoreline accretion and low wave energy. 

The most influential variables in the CVI are geomorphology, historical shoreline change rates, and 
significant wave height; therefore they may be considered the dominant factors controlling how Dry Tortugas will 
evolve as sea level rises. Geomorphology and significant wave height only vary between high and very high and low 
and very low vulnerability, respectively; whereas the shoreline change variable ranges from low to very high. 

Conclusions 

The coastal vulnerability index (CVI) provides insight into the relative potential of coastal change due to 
future sea-level rise. The maps and data presented here can be viewed in at least two ways: 

 



1. as an indication of where physical changes are most likely to occur as sea level continues to rise; and 

2. as a planning tool for the Dry Tortugas National Park. 

As ranked in this study, geomorphology, historical rates of shoreline change, and significant wave height 
and are the most important variables in determining the spatial variability of the CVI for Dry Tortugas. Regional 
coastal slope, tidal range, and sea-level rise rate do not contribute to the spatial variability in the coastal vulnerability 
index. 

Dry Tortugas National Park preserves a dynamic natural environment, which must be understood in order 
to be managed properly. The CVI is one way that park managers can assess objectively the natural factors that 
contribute to the evolution of the coastal zone, and thus how the park may evolve in the future.  
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Figure  4B.  Historic shoreline change for Garden Key, Bush Key, and Long Key. 



 
Figure  4C.  Historic shoreline change for Hospital Key, Middle Key, and East Key. 



 
Figure  5.  Relative Coastal Vulnerability for Dry Tortugas National Park. The innermost color bar is the relative coastal vulnerability index 
(CVI). The remaining color bars are separated into the geologic variables (1-3) and physical process variables (4 - 6). The very high 
vulnerability shoreline is located on East Key and Middle Key where rates of shoreline change have been highest. The low vulnerability 
shoreline is located on the south side of Bush Key and the west side of Long Key, where wave energy is low. 



 
Figure  6.  Percentage of Dry Tortugas shoreline in each CVI category. 

 



 
 

Table 1. Ranges for Vulnerability Ranking of Variables on the Atlantic and Gulf Coast.

   Variables  Very Low 
1 

Low 
2 

Moderate 
3 

High 
4  

Very High 
5 

GEOMORPHOLOGY 

Rocky 
cliffed 
coasts, 
Fjords 

Medium 
cliffs, 

Indented 
coasts 

Low cliffs, 
Glacial drift, 

Alluvial plains

Cobble 
Beaches, 
Estuary, 
Lagoon 

Barrier beaches, Sand beaches, 
Salt marsh, Mud flats, Deltas,  

Mangrove, Coral reefs 

SHORELINE EROSION/ 
ACCRETION (m/yr) 

> 2.0 1.0 - 2.0 -1.0 - 1.0 -2.0 - -1.0 < -2.0 

COASTAL SLOPE (%) > 1.20 1.20 - 0.90 0.90 - 0.60 0.60 - 0.30 < 0.30 

RELATIVE SEA-LEVEL 
CHANGE (mm/yr) < 1.8 1.8 - 2.5 2.5 - 3.0 3.0 - 3.4 > 3.4 

MEAN WAVE HEIGHT (m) < 0.55 0.55 - 0.85 0.85 - 1.05 1.05 - 1.25 > 1.25 

MEAN TIDE RANGE (m)  > 6.0 4.0 - 6.0 2.0 - 4.0 1.0 - 2.0 < 1.0 

 



 

Table 2. Sources for Variable Data 

Variables Source 
URL 

(Not all sources are downloadable) 

GEOMORPHOLOGY 
1994 USGS Orthophotos 

(DOQQs) http://terraserver.microsoft.com/

SHORELINE 
EROSION/ACCRETION (m/yr) 

Dry Tortugas shoreline 
change data (1922-1994) 
digitized in house from T-
sheets, aerial photos, and 

nautical charts. 

 

http://historicals.ncd.noaa.gov/historicals/histmap.asp 
 
  

COASTAL SLOPE (%) 
NGDC Coastal Relief Model 

Vol 03 
http://www.ngdc.noaa.gov/mgg/coastal/coastal.html

RELATIVE SEA-LEVEL CHANGE 
(mm/yr) 

NOAA Technical Report NOS 
CO-OPS 36 SEA LEVEL 

VARIATIONS OF THE UNITED 
STATES 1854-1999 (Zervas, 

2001) http://www.co-ops.nos.noaa.gov/publications/techrpt36doc.pdf

MEAN WAVE HEIGHT (m) 
North Atlantic Region WIS 
Data (Phase II) and NOAA 
National Data Buoy Center 

http://www.frf.usace.army.mil/wis/WISabout.html 
 
http://seaboard.ndbc.noaa.gov/

MEAN TIDE RANGE (m) 
NOAA/NOS CO-OPS 

Historical Water Level 
Station Index http://www.co-ops.nos.noaa.gov/usmap.html

 
 
 

 

http://terraserver.microsoft.com/
http://historicals.ncd.noaa.gov/historicals/histmap.asp
http://www.ngdc.noaa.gov/mgg/coastal/coastal.html
http://www.co-ops.nos.noaa.gov/publications/techrpt36doc.pdf
http://www.frf.usace.army.mil/wis/WISabout.html
http://seaboard.ndbc.noaa.gov/
http://www.co-ops.nos.noaa.gov/usmap.html
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